該位置的原子數(shù)密度等于整體液體系統(tǒng)的平均數(shù)密度
ρ0。對于氣體,由于
其粒子的統(tǒng)計分布的平均性,其偶分布函數(shù)g(r)在任何位置均相等,g(r)=1。晶態(tài)固體
因原子以特定方式周期排列,其g(r)以相應(yīng)規(guī)律呈孤立的若干尖銳峰。液體的g(r)出現(xiàn)
若干漸衰的鈍化峰直至幾個原子間距后趨向g(r)=1,表明液體的原子集團 (短程有序的局
域范圍)半徑只有幾個原子間距大小。非晶固體的g(r)與液體相似。對于液體,對應(yīng)于
g(r)峰的位置,r=r1 表示參考原子至其周圍第配位層各原子的平均原子間距,由
于衍射所獲得的g(r)具有統(tǒng)計平均意義,r1 也表示某液體的平均原子間距。
![](http://zs1.img-1.com/pic/189135/p6/20170628150751_3518_zs.jpg)
(2)鑄型性質(zhì)的影響 鑄件在鑄型中的凝固是因鑄型吸熱而進行的。所以,任何鑄件的
凝固速度都受鑄型吸熱速度的支配。鑄型的吸熱速度越大,則鑄件的凝固速度越大,斷面上
的溫度場的梯度也就越大。鑄型的蓄熱系數(shù) (b2)越大,對鑄件的冷卻能力越強,鑄件中的
溫度梯度就越大。鑄型預(yù)熱溫度越高,冷卻作用就越小,鑄件斷面上的溫度梯度也就越小。
(3)澆注條件的影響 液態(tài)金屬的澆注溫度很少超過液相線以上100℃,因此,金屬由
于過熱所得到的熱量比結(jié)晶潛熱要小得多,一般不大于凝固期間放出的總熱量的5%~6%。
但是,實驗證明,在砂型鑄造中非等到液態(tài)金屬的所有過熱量全部散失。![](http://zs1.img-1.com/pic/189135/p5/20170621085524_6411_zs.jpg)
因為空穴數(shù)目的增加不可能是突變的。因此,對于這種突變,應(yīng)當(dāng)理解為金屬已熔化,已由固態(tài)變?yōu)?/span>
液態(tài),發(fā)生狀態(tài)改變造成的。從圖11可以看出,假設(shè)在熔點附近原子間距達到了R1,原
子具有很高的能量,很容易超過勢壘而離位。但是在相鄰原子最引力作用下,仍然要向平
衡位置運動。雖然此時離位原子和空穴大為增加,金屬仍表現(xiàn)為固體性質(zhì)。若此時從外界供
給足夠的能量———熔化潛熱,使原子間距離超過R1,原子間的引力急劇減小,從而造成原
子結(jié)合鍵突然破壞,金屬則從固態(tài)進入熔化狀態(tài)。
![](http://zs1.img-1.com/pic/189135/p6/20170628150742_4513_zs.jpg)