故金屬的流動條件和溫度條件都在隨時改變,這必然影響到所測流動性的準確度;各次試驗所用鑄型條件也很難
精控制;每做一次試驗要造一次鑄型。在生產(chǎn)和科研中螺旋形試樣應(yīng)用較多。真空試樣如
圖117所示,它的優(yōu)點是鑄型條件和液態(tài)金屬的充型壓頭穩(wěn)定,真空度可以隨液態(tài)金屬的
密度不同而改變,使各種金屬能在相同的壓頭下充填,從而增加了試驗結(jié)果的對比性,可以
觀察充填過程,記錄流動長度與時間的關(guān)系。
②σSG<σLS時,cosθ為負值,即θ>90°。此情況下,液體傾向于形成球狀,稱之為液體能潤濕固體。θ=180°為完全不潤濕。
2影響界面張力的因素
(1)熔點 原子間結(jié)合力大的物質(zhì),其熔點高,表面張力也大。表13為幾種金屬的熔和表面張力。
(2)溫度 對于多數(shù)金屬和合金,
度升高,表面張力降低,即dσdt<0。這因為,溫度升高時,液體質(zhì)點間距增,表面質(zhì)點的受力不對稱性減弱,因表面張力降低。當達到液體的臨界溫時,由于氣液兩相界面消失,表面張等于零。但是,對于某些合金,如鑄
、碳鋼、銅及其合金等,其表面張力隨溫度的升高而增大,即dσdt>0。如圖1所示。
在鑄件斷度梯度相近的情況下,固液相區(qū)的寬度取決于鑄件合金的凝固溫度區(qū)間ΔtC 的大小。圖
8是三種不同碳質(zhì)量分數(shù)的碳鋼在砂型和金屬型中凝固時測得的動態(tài)凝固曲線??梢姡?/p>
碳質(zhì)量分數(shù)增加,碳鋼的結(jié)晶溫度范圍在不斷擴大,鑄件斷面的凝固區(qū)域隨之加寬。低
在砂型中的凝固近于逐層凝固方式,中碳鋼為中間凝固方式,高碳鋼近于體積凝固。
當鑄件合金成分確定后,鑄件斷面固液相區(qū)的寬度則取決于鑄件中的溫度梯度。溫度梯
度較大時,固液相區(qū)的寬度較窄,則合金趨向于逐層凝固方式,反之依然。