(2)合理的熔煉工藝 正確選擇原材料,去除金屬上的銹蝕,油污,熔劑烘干,在熔煉
程中盡量使金屬液不接觸或少接觸有害氣體;對某些合金充分脫氧或精煉去氣,減少其中
非金屬夾雜物和氣體。多次熔煉的鑄鐵和廢鋼,由于其中含有較多的氣體,應(yīng)盡量減少用
;采用 “高溫出爐,低溫澆注”工藝等。
2鑄型性質(zhì)方面的因素
鑄型的阻力影響金屬液的充型速度,鑄型與金屬的熱交換強度影響金屬液保持流動的時
。所以,鑄型性質(zhì)方面的因素對金屬液的充型能力有重要的影響。同時,通過調(diào)整鑄型性
來改善金屬的充型能力,也往往能得到較好的效果。
如果因鑄件斷面溫度場較平坦 [圖134(a)],或合金的結(jié)晶溫度范圍很寬 [圖134
(b)],鑄件凝固的某一段時間內(nèi),其凝固區(qū)域在某時刻貫穿整個鑄件斷面時,則在凝固區(qū)
域里既有已結(jié)晶的晶體也有未凝固的液體,這種情況為 “體積凝固方式”,或稱 “糊狀凝固
方式”。
如果合金的結(jié)晶溫度范圍較窄 [圖135(a)],或者鑄件斷面的溫度梯度較大 [圖135
圖135 “中間凝固方式”示意圖
(b)],鑄件斷面上的凝固區(qū)域?qū)挾冉橛谇?/p>
二者之間時,則屬于 “中間凝固方式”。
凝固區(qū)域的寬度可以根據(jù)凝固動態(tài)曲
線上的 “液相邊界”與 “固相邊界”之間
的縱向距離直接判斷。因此,這個距離的
大小是劃分凝固方式的一個準(zhǔn)則。如果兩
條曲線重合在一起———恒溫下結(jié)晶的金屬,
或者其間距很小,則趨向于逐層凝固方式。
可以看出,鑄件的溫度場隨時間而變化,為不穩(wěn)定溫度場。鑄件斷面上的溫度場
也稱溫度分布曲線。如果鑄件均勻壁兩側(cè)的冷卻條件相同,則任何時刻的溫度分布曲線
對鑄件壁厚的軸線是對稱的。溫度場的變化速率,即為表征鑄件冷卻強度的溫度梯度。
溫度場能更直觀地顯示出凝固過程的情況。
圖131所示是鑄件的凝固動態(tài)曲線,也是根據(jù)直接測量的溫度時間曲線繪制的:首先
圖131(a)上給出合金的液相線和固相線溫度,把二直線與溫度時間曲線相交的各點分
標(biāo)注在圖131(b)(x/R,τ)坐標(biāo)系上,再將各點連接起來,即得凝固動態(tài)曲線??v坐標(biāo)
子x是鑄件表面向中心方向的距離,分母R是鑄件壁厚之半或圓柱體和球體的半徑。因
固是從鑄件壁兩側(cè)同時向中心進行,所以x/R=1表示已凝固至鑄件中心。