可以看出,鑄件的溫度場隨時間而變化,為不穩(wěn)定溫度場。鑄件斷面上的溫度場
也稱溫度分布曲線。如果鑄件均勻壁兩側的冷卻條件相同,則任何時刻的溫度分布曲線
對鑄件壁厚的軸線是對稱的。溫度場的變化速率,即為表征鑄件冷卻強度的溫度梯度。
溫度場能更直觀地顯示出凝固過程的情況。
圖131所示是鑄件的凝固動態(tài)曲線,也是根據直接測量的溫度時間曲線繪制的:首先
圖131(a)上給出合金的液相線和固相線溫度,把二直線與溫度時間曲線相交的各點分
標注在圖131(b)(x/R,τ)坐標系上,再將各點連接起來,即得凝固動態(tài)曲線??v坐標
子x是鑄件表面向中心方向的距離,分母R是鑄件壁厚之半或圓柱體和球體的半徑。因
固是從鑄件壁兩側同時向中心進行,所以x/R=1表示已凝固至鑄件中心。
1金屬晶體中的原子結合、加熱膨脹、熔化
晶體的結構和性能主要決定于組成晶體的原子結構和它們之間的相互作用力與熱運動。
各種不同的晶體其結合力的類型和大小是不同的。但是在任何晶體中,兩個原子間的相互作
圖11?。?、B原子作用力F和
勢能W 與原子間距R的關系
用力或相互作用勢能與它們之間距離的關系在性質上是相同的,如圖11所示。圖11(a)
表示原子間相互作用力F隨原子間距離R的變化規(guī)律。當兩個原子相距無窮遠時,相互作
用力為零,當兩原子靠近時,原子間產生吸引力 (F<0),
并隨距離的縮短而增大。隨著距離的繼續(xù)縮短,到達R=
R1 時,吸引力大。
當dσdt<0,即溶質濃度增加,引起表面張力減少時,Γ>0,為正吸附。dσdt>0,即溶質
增加,引起表面張力增大時,Γ<0,為負吸附。由此可知,所謂正吸附就是溶質元素
面上的濃度大于在液體內部的濃度,負吸附則是溶質元素在表面上的濃度小于在內部的
。因此,表面活性物質具有正吸附作用;而非表面活性物質具有負吸附作用。
溶質的原子體積大于溶劑的原子體積時,由于它對溶劑晶格的歪曲,使勢能增加。但
系統(tǒng)總是向減小自由能方向自發(fā)進行,因而,這些體積較大的原子總是傾向于被排擠到
,在表面富集———正吸附。由于這些原子體積大,表面張力低,使整個系統(tǒng)的表面張力
。這也可以用表面層原子受力不對稱性程度加以解釋。