(2)鑄型性質(zhì)的影響 鑄件在鑄型中的凝固是因鑄型吸熱而進(jìn)行的。所以,任何鑄件的
凝固速度都受鑄型吸熱速度的支配。鑄型的吸熱速度越大,則鑄件的凝固速度越大,斷面上
的溫度場的梯度也就越大。鑄型的蓄熱系數(shù) (b2)越大,對(duì)鑄件的冷卻能力越強(qiáng),鑄件中的
溫度梯度就越大。鑄型預(yù)熱溫度越高,冷卻作用就越小,鑄件斷面上的溫度梯度也就越小。
(3)澆注條件的影響 液態(tài)金屬的澆注溫度很少超過液相線以上100℃,因此,金屬由
于過熱所得到的熱量比結(jié)晶潛熱要小得多,一般不大于凝固期間放出的總熱量的5%~6%。
但是,實(shí)驗(yàn)證明,在砂型鑄造中非等到液態(tài)金屬的所有過熱量全部散失。
在鑄件斷度梯度相近的情況下,固液相區(qū)的寬度取決于鑄件合金的凝固溫度區(qū)間ΔtC 的大小。圖
8是三種不同碳質(zhì)量分?jǐn)?shù)的碳鋼在砂型和金屬型中凝固時(shí)測得的動(dòng)態(tài)凝固曲線。可見,
碳質(zhì)量分?jǐn)?shù)增加,碳鋼的結(jié)晶溫度范圍在不斷擴(kuò)大,鑄件斷面的凝固區(qū)域隨之加寬。低
在砂型中的凝固近于逐層凝固方式,中碳鋼為中間凝固方式,高碳鋼近于體積凝固。
當(dāng)鑄件合金成分確定后,鑄件斷面固液相區(qū)的寬度則取決于鑄件中的溫度梯度。溫度梯
度較大時(shí),固液相區(qū)的寬度較窄,則合金趨向于逐層凝固方式,反之依然。
圖131(b)左邊的曲線與鑄件斷面上各時(shí)刻的液相等溫線相對(duì)應(yīng),稱為 “液相邊界”,
右邊的曲線與固相等溫線相對(duì)應(yīng),稱為 “固相邊界”。從圖131(b)可以看出,時(shí)間為2min
時(shí),距鑄件表面x/R=06處合金開始凝固,由該處至鑄件中心的合金仍為液態(tài) (液相區(qū));
x/R=02處合金剛剛凝固完了,從該處至鑄件表面的合金為固態(tài) (固相區(qū)),二者之間是
液固兩相區(qū) (凝固區(qū))。到32min時(shí),液相區(qū)消失。經(jīng)過53min,鑄件壁凝固完畢。所
以,圖131(b)的兩條曲線是表示鑄件斷面上液相和固相等溫線由表面向中心推移的動(dòng)態(tài)
曲線?!耙合嗑€”邊界從鑄件表面向中心移動(dòng),所到之處凝固就開始;