距離再縮短時,吸引力又逐漸減小,
到R=R0時,相互作用力等于零 (F=0),此時達(dá)到平衡,
R0 為平衡距離。當(dāng)距離小于平衡距離R0 時,出現(xiàn)排斥力
(P>0),并隨距離的繼續(xù)縮短而迅速增大。作用力F是由
引力和斥力構(gòu)成的合力。吸引力是異性電荷間的庫侖引
力;排斥力是同性電荷之間的斥力和。兩個原子的相互作
用勢能W (R)的曲線如圖11(b)所示,可見在R=R0
時,對應(yīng)于能量的極小值,狀態(tài)穩(wěn)定。這說明,原子之間
傾向于保持一定的間距,這就是在一定條件下,金屬中的
原子具有一定排列的原因。
2.鑄件的凝固方式
一般將鑄件的凝固方式分為三種類型。逐層凝固方式、體積凝固方式 (或稱糊狀凝固方
式)和中間凝固方式。鑄件的凝固方式取決于凝固區(qū)域的寬度。
72
T1 和T2 是鑄件斷面上兩個不同時刻的溫度場。
從圖中可觀察到,恒溫下結(jié)晶的金屬,在凝固過程中其鑄件斷面上的凝固區(qū)域?qū)挾鹊扔?/p>
零。斷面上的固體和液體由一條界線 (凝固前沿)清楚地分開。隨著溫度的下降,固體層不
斷加厚,逐步到達(dá)鑄件中心。這種情況為 “逐層凝固方式”。
如果合金的結(jié)晶溫度范圍很小,或斷面溫度梯度很大時,鑄件斷面的凝固區(qū)域則很窄,
也屬于逐層凝固方式 [圖133(b)]。
對于結(jié)晶溫度范圍較寬的合金,散失一部分
(約20%)潛熱后,晶粒就連成網(wǎng)絡(luò)而阻塞流動,
大部分結(jié)晶潛熱的作用不能發(fā)揮,所以對流動性影
響不大。但是,也有例外的情況,當(dāng)初生晶為非金
屬,或者合金能在液相線溫度以下以液固混合狀
態(tài),在不大的壓力下流動時,結(jié)晶潛熱則可能是個
重要的因素。例如,在相同的過熱度下AlSi合金的流動性,在共晶成分處并非大值,而
在過共晶區(qū)里繼續(xù)增加 (圖121),就是因為初生硅相是比較規(guī)整的塊狀晶體,且具有較小
的機械強度,不形成堅強的網(wǎng)絡(luò),能夠以液固混合狀態(tài)在液相線溫度以下流動。