減小鑄型中氣體反壓力的途徑有兩條。一條是適當(dāng)?shù)托蜕爸械暮亢桶l(fā)氣物質(zhì)的含量,亦即減小
砂型的發(fā)氣性;另一條途徑是提高砂型的透氣性,在砂型上扎通氣孔,或在離澆注端最遠(yuǎn)或高部位設(shè)通
氣冒口,增加砂型的排氣能力。
3澆注條件方面的因素
(1)澆注溫度 澆注溫度對(duì)液態(tài)金屬的充型能力
有決定性的影響。澆注溫度越高,充型能力越好。在
一定溫度范圍內(nèi),充型能力隨澆注溫度的提高而直線
上升。超過(guò)某界限后,由于金屬吸氣多,氧化嚴(yán)重,充型能力的提高幅度越來(lái)越小。對(duì)于薄
壁鑄件或流動(dòng)性差的合金,利用提高澆注溫度改善充型能力的措施,在生產(chǎn)中經(jīng)常采用,也
比較方便。但是,隨著澆注溫度的提高,鑄件一次結(jié)晶組織粗大,容易產(chǎn)生縮孔、縮松、粘
砂、裂紋等缺陷,因此必須綜合考慮,謹(jǐn)慎使用。
可以看出,鑄件的溫度場(chǎng)隨時(shí)間而變化,為不穩(wěn)定溫度場(chǎng)。鑄件斷面上的溫度場(chǎng)
也稱(chēng)溫度分布曲線。如果鑄件均勻壁兩側(cè)的冷卻條件相同,則任何時(shí)刻的溫度分布曲線
對(duì)鑄件壁厚的軸線是對(duì)稱(chēng)的。溫度場(chǎng)的變化速率,即為表征鑄件冷卻強(qiáng)度的溫度梯度。
溫度場(chǎng)能更直觀地顯示出凝固過(guò)程的情況。
圖131所示是鑄件的凝固動(dòng)態(tài)曲線,也是根據(jù)直接測(cè)量的溫度時(shí)間曲線繪制的:首先
圖131(a)上給出合金的液相線和固相線溫度,把二直線與溫度時(shí)間曲線相交的各點(diǎn)分
標(biāo)注在圖131(b)(x/R,τ)坐標(biāo)系上,再將各點(diǎn)連接起來(lái),即得凝固動(dòng)態(tài)曲線??v坐標(biāo)
子x是鑄件表面向中心方向的距離,分母R是鑄件壁厚之半或圓柱體和球體的半徑。因
固是從鑄件壁兩側(cè)同時(shí)向中心進(jìn)行,所以x/R=1表示已凝固至鑄件中心。
下面以半無(wú)限大的鑄件為例,運(yùn)用導(dǎo)熱微分方程式
求鑄件和鑄型中的溫度場(chǎng)。
假設(shè)具有一個(gè)平面的半無(wú)限大鑄件在半無(wú)限大的鑄
型中冷卻,如圖123所示。鑄件和鑄型的材料是均質(zhì)
12
的,其熱擴(kuò)散率α1 和α2 近似地為不隨溫度變化的定值,鑄型的初始溫度為t20,并設(shè)液態(tài)金
屬充滿鑄型后立即停止流動(dòng),且各處溫度均勻,即鑄件的初始溫度為t10,將坐標(biāo)的原點(diǎn)設(shè)
在鑄件與鑄型的接觸面上。在這種情況下,鑄件和鑄型任意一點(diǎn)的溫度t與y和z無(wú)關(guān),為
一維導(dǎo)熱問(wèn)題。