因此,實(shí)際金屬和合金的液體結(jié)構(gòu)中存在著兩種起伏:一種是能
量起伏,表現(xiàn)為各個(gè)原子間能量的不同和各個(gè)原子集團(tuán)間尺寸的不同;另一種是濃度起伏,
表現(xiàn)為各個(gè)原子集團(tuán)之間成分的不同。
如果AB原子間的結(jié)合力較強(qiáng),則足以在液體中形成新的化學(xué)鍵,在熱運(yùn)動(dòng)的作用下,
出現(xiàn)時(shí)而化合,時(shí)而分解的分子,也可稱為臨時(shí)的不穩(wěn)定化合物,或者在低溫時(shí)化合,在高
溫時(shí)分解。例如,硫在鐵液中高溫時(shí)可以完全溶解,而在較低溫度下則可能析出FeS。當(dāng)
AB原子間或同類原子間結(jié)合非常強(qiáng)時(shí),則可以形成比較強(qiáng)而穩(wěn)定的結(jié)合,在液體中就出現(xiàn)
新的固相 (如氧在鋁中形成Al2O3,氧與鐵中的硅形成SiO2 等)或氣相。
2.鑄件的凝固方式
一般將鑄件的凝固方式分為三種類型。逐層凝固方式、體積凝固方式 (或稱糊狀凝固方
式)和中間凝固方式。鑄件的凝固方式取決于凝固區(qū)域的寬度。
72
T1 和T2 是鑄件斷面上兩個(gè)不同時(shí)刻的溫度場(chǎng)。
從圖中可觀察到,恒溫下結(jié)晶的金屬,在凝固過(guò)程中其鑄件斷面上的凝固區(qū)域?qū)挾鹊扔?/p>
零。斷面上的固體和液體由一條界線 (凝固前沿)清楚地分開。隨著溫度的下降,固體層不
斷加厚,逐步到達(dá)鑄件中心。這種情況為 “逐層凝固方式”。
如果合金的結(jié)晶溫度范圍很小,或斷面溫度梯度很大時(shí),鑄件斷面的凝固區(qū)域則很窄,
也屬于逐層凝固方式 [圖133(b)]。
熔化潛熱使晶粒瓦解,液體原子具有更高
的能量,而金屬的溫度并不升高。從熱力學(xué)角度,在恒壓時(shí),外界所供給的潛熱,除使體積
膨脹做功外,還增加系統(tǒng)的內(nèi)能,如式(11)所示。在等溫等壓下,熵值的增量如式(12)
所示。
系統(tǒng)熵值增加表示原子排列發(fā)生紊亂。因此,熔化過(guò)程就是金屬?gòu)囊?guī)則的原子排列突變
為紊亂的非晶態(tài)結(jié)構(gòu)的過(guò)程。
2液態(tài)金屬的結(jié)構(gòu)
(1)從物質(zhì)熔化 (汽化)過(guò)程對(duì)液態(tài)金屬結(jié)構(gòu)的認(rèn)識(shí) 如表11所示,金屬物質(zhì)熔化時(shí)
的體積一般僅增加3%~5%,即原子平均間距僅增加1%~15%,熔化時(shí)的熵值變化量遠(yuǎn)
小于加熱膨脹過(guò)程。