。這是由于難熔化合物的結合
力強,在冷至熔點之前就及早地開始了原子集聚。對于
共晶成分合金,異類原子間不發(fā)生結合,而同類原子聚
合時,由于異類原子的存在所造成的阻礙,使它們聚合
緩慢,晶胚的形成滯后,故黏度較非共晶成分的低。
(3)夾雜 液態(tài)合金中呈固態(tài)的非金屬夾雜物的存
在使液態(tài)合金成為不均勻的多相系統(tǒng),液體流動時內摩
擦力增加。造成液態(tài)合金的黏度增加,如鋼中的硫化錳、
氧化鋁、氧化硅等。
1金屬晶體中的原子結合、加熱膨脹、熔化
晶體的結構和性能主要決定于組成晶體的原子結構和它們之間的相互作用力與熱運動。
各種不同的晶體其結合力的類型和大小是不同的。但是在任何晶體中,兩個原子間的相互作
圖11 A、B原子作用力F和
勢能W 與原子間距R的關系
用力或相互作用勢能與它們之間距離的關系在性質上是相同的,如圖11所示。圖11(a)
表示原子間相互作用力F隨原子間距離R的變化規(guī)律。當兩個原子相距無窮遠時,相互作
用力為零,當兩原子靠近時,原子間產生吸引力 (F<0),
并隨距離的縮短而增大。隨著距離的繼續(xù)縮短,到達R=
R1 時,吸引力大。
這就意味著當溫度升高,能量從W0→W1→W2→W3→W4 時,其間距 (振幅中心位置)將由
R0→R1→R2→R3→R4。也就是說,原子間距離將隨溫度的升高而增加,即產生熱膨脹。另
一方面,空穴的產生也是物體膨脹的原因之一。由于能量起伏,一些原子則可能越過勢壘跑
到原子之間的間隙中或金屬表面,而失去大量能量,在新的位置上作微小振動 (圖13)。
有機會獲得能量,又可以跑到新的位置上。如此下去,它可以在整個晶體中 “游動”,這個
過程稱為內蒸發(fā)。原子離開點陣后,留下了自由點陣———空穴。