這就意味著當(dāng)溫度升高,能量從W0→W1→W2→W3→W4 時(shí),其間距 (振幅中心位置)將由
R0→R1→R2→R3→R4。也就是說,原子間距離將隨溫度的升高而增加,即產(chǎn)生熱膨脹。另
一方面,空穴的產(chǎn)生也是物體膨脹的原因之一。由于能量起伏,一些原子則可能越過勢壘跑
到原子之間的間隙中或金屬表面,而失去大量能量,在新的位置上作微小振動(dòng) (圖13)。
有機(jī)會(huì)獲得能量,又可以跑到新的位置上。如此下去,它可以在整個(gè)晶體中 “游動(dòng)”,這個(gè)
過程稱為內(nèi)蒸發(fā)。原子離開點(diǎn)陣后,留下了自由點(diǎn)陣———空穴。
(1)鑄型的蓄熱系數(shù) 鑄型的蓄熱系數(shù)b2 (b2= c2ρ2λ槡2)表示鑄型從其中的金屬中吸
取并儲(chǔ)存于本身中熱量的能力。蓄熱系數(shù)b2
越大,鑄型的激冷能力就越強(qiáng),金屬液于其中
保持液態(tài)的時(shí)間就越短,充型能力下降。金屬型鑄造中,經(jīng)常采用涂料調(diào)整其蓄熱系數(shù)b2
。
為使金屬型澆口和冒口中的金屬液緩慢冷卻,常在一般的涂料中加入b2
很小的石棉粉。
(2)鑄型的溫度 預(yù)熱鑄型能減小金屬與鑄型的溫差,從而提高其充型能力。例如,在
金屬型中澆注鋁合金鑄件,將鑄型溫度由340℃提高到520℃,在相同的澆注溫度 (760℃)
下,螺旋線長度由525mm增加到950mm。在熔模鑄造中,為得到清晰的鑄件輪廓,可將型
殼焙燒到800℃以上進(jìn)行澆注或利用型殼焙燒剛結(jié)束的高溫余熱進(jìn)行澆注。
圖131(b)左邊的曲線與鑄件斷面上各時(shí)刻的液相等溫線相對應(yīng),稱為 “液相邊界”,
右邊的曲線與固相等溫線相對應(yīng),稱為 “固相邊界”。從圖131(b)可以看出,時(shí)間為2min
時(shí),距鑄件表面x/R=06處合金開始凝固,由該處至鑄件中心的合金仍為液態(tài) (液相區(qū));
x/R=02處合金剛剛凝固完了,從該處至鑄件表面的合金為固態(tài) (固相區(qū)),二者之間是
液固兩相區(qū) (凝固區(qū))。到32min時(shí),液相區(qū)消失。經(jīng)過53min,鑄件壁凝固完畢。所
以,圖131(b)的兩條曲線是表示鑄件斷面上液相和固相等溫線由表面向中心推移的動(dòng)態(tài)
曲線?!耙合嗑€”邊界從鑄件表面向中心移動(dòng),所到之處凝固就開始;