距離再縮短時(shí),吸引力又逐漸減小,
到R=R0時(shí),相互作用力等于零 (F=0),此時(shí)達(dá)到平衡,
R0 為平衡距離。當(dāng)距離小于平衡距離R0 時(shí),出現(xiàn)排斥力
(P>0),并隨距離的繼續(xù)縮短而迅速增大。作用力F是由
引力和斥力構(gòu)成的合力。吸引力是異性電荷間的庫侖引
力;排斥力是同性電荷之間的斥力和。兩個(gè)原子的相互作
用勢能W (R)的曲線如圖11(b)所示,可見在R=R0
時(shí),對應(yīng)于能量的極小值,狀態(tài)穩(wěn)定。這說明,原子之間
傾向于保持一定的間距,這就是在一定條件下,金屬中的
原子具有一定排列的原因。
對應(yīng)著漸次收縮的鑄型體積,鑄件的冷卻速度比平面部分要小。由此可以
推論,鑄型中被液態(tài)金屬三面包圍的突出部分、型芯以及靠近內(nèi)澆道附近的鑄型部分,由于
有大量金屬液通過,被加熱到很高溫度,吸熱能力顯著下降,相對應(yīng)的鑄件部分,其溫度場
就比較平坦。
二、不同界面熱阻條件下的溫度場
1鑄件在絕熱鑄型中凝固
砂型、石膏型、陶瓷型、熔模鑄造等鑄型材料的熱導(dǎo)率遠(yuǎn)小于凝固金屬的熱導(dǎo)率,可統(tǒng)
稱為絕熱鑄型。因此,在凝固傳熱中,金屬鑄件的溫度梯度比鑄型中的溫度梯度小得多。相
對而言,金屬中的溫度梯度可忽略不計(jì)。
晶體中每個(gè)原子皆在平衡位置附近振動(dòng) (即所謂熱振
動(dòng)),溫度升高時(shí)振動(dòng)能量增加,振動(dòng)頻率和振幅加大。
以雙原子為模型 (圖12),假設(shè)左邊的原子在坐標(biāo)原點(diǎn)被
固定,而右邊的原子是自由的。當(dāng)溫度升高時(shí),右邊自由
振動(dòng)原子的振幅增大,此時(shí),若該原子以R0 為原點(diǎn)作簡諧振動(dòng),則其平衡位置仍是R0,這
樣就不會(huì)發(fā)生膨脹。但勢能曲線向右是水平漸近線,向左是垂直漸近線,是極不對稱的。