3表面張力引起的附加壓力
假設(shè)液體中有一半徑為r的球形氣泡,
由于液體表面張力造成了指向內(nèi)部的力p
(圖113)。若將球的體積增大ΔV,則必須
克服阻力p而對(duì)它做功:ΔW=pΔV。而
這一所做之功變?yōu)楸砻娣e增大后的表面自
由能增量:ΔF=σΔS(ΔS為球體增大之表面積)
由此可見(jiàn),因表面張力而造成的附加壓力p的大小與曲率半徑r成反比。
則r1=r2=r。附加壓力p也稱拉普拉斯壓力。
如液面凸起 (不潤(rùn)濕),附加壓力為正值,液面下凹 (潤(rùn)濕),附加壓力為負(fù)值,如圖
4所示。造型材料一般不被液態(tài)金屬潤(rùn)濕,即θ>90°(θ為潤(rùn)濕角)。故液態(tài)金屬在鑄型
道內(nèi)的表面是凸起的,如圖115所示,此時(shí)產(chǎn)生指向內(nèi)部的附加壓力。
空穴的產(chǎn)生使局部地區(qū)能壘
降低,鄰近的原子則進(jìn)入空穴位置,造成空穴的移動(dòng)。溫度愈高,原子的能量愈大,產(chǎn)生的
空穴數(shù)目愈多,從而使金屬膨脹。在熔點(diǎn)附近,空穴數(shù)目可達(dá)原子總數(shù)的10%。
當(dāng)把金屬加熱到熔點(diǎn)時(shí),會(huì)使金屬的體積突然膨脹3%~5%。這個(gè)數(shù)值等于固態(tài)金屬
力學(xué)溫度零度加熱到熔點(diǎn)前的總膨脹量。除此之外,金屬的其他性質(zhì)如電阻、黏性等在
度下發(fā)生突變。同時(shí),這種突變還反映在熔化潛熱上,即金屬在此時(shí)吸收大量熱量,溫
不升高。這些突變現(xiàn)象是不能僅僅用離位原子和空穴數(shù)目的增加加以解釋的。
這就意味著當(dāng)溫度升高,能量從W0→W1→W2→W3→W4 時(shí),其間距 (振幅中心位置)將由
R0→R1→R2→R3→R4。也就是說(shuō),原子間距離將隨溫度的升高而增加,即產(chǎn)生熱膨脹。另
一方面,空穴的產(chǎn)生也是物體膨脹的原因之一。由于能量起伏,一些原子則可能越過(guò)勢(shì)壘跑
到原子之間的間隙中或金屬表面,而失去大量能量,在新的位置上作微小振動(dòng) (圖13)。
有機(jī)會(huì)獲得能量,又可以跑到新的位置上。如此下去,它可以在整個(gè)晶體中 “游動(dòng)”,這個(gè)
過(guò)程稱為內(nèi)蒸發(fā)。原子離開(kāi)點(diǎn)陣后,留下了自由點(diǎn)陣———空穴。