從所周知,大數(shù)據(jù)已經(jīng)不簡(jiǎn)簡(jiǎn)單單是數(shù)據(jù)大的事實(shí)了,而最重要的現(xiàn)實(shí)是對(duì)大數(shù)據(jù)進(jìn)行分析,只有通過(guò)分析才能獲取很多智能的,深入的,有價(jià)值的信息。那么越來(lái)越多的應(yīng)用涉及到大數(shù)據(jù),而這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長(zhǎng)的復(fù)雜性,所以大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說(shuō)是決定最終信息是否有價(jià)值的決定性因素?;谌绱说恼J(rèn)識(shí),大數(shù)據(jù)分析普遍存在的方法理論有哪些呢?
1.?可視化分析。大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專家,同時(shí)還有普通用戶,但是他們二者對(duì)于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說(shuō)話一樣簡(jiǎn)單明了。
? 2.?數(shù)據(jù)挖掘算法。大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn)。另外一個(gè)方面也是因 為有這些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無(wú)從說(shuō)起了。
? 3.?預(yù)測(cè)性分析。大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測(cè)性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過(guò)科學(xué)的建立模型,之后便可以通過(guò)模型帶入新的數(shù)據(jù),從而預(yù)測(cè)未來(lái)的數(shù)據(jù)。
?4.?語(yǔ)義引擎。非結(jié)構(gòu)化數(shù)據(jù)的多元化給數(shù)據(jù)分析帶來(lái)新的挑戰(zhàn),我們需要一套工具系統(tǒng)的去分析,提煉數(shù)據(jù)。語(yǔ)義引擎需要設(shè)計(jì)到有足夠的人工智能以足以從數(shù)據(jù)中主動(dòng)地提取信息。
? 5.數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理。大數(shù)據(jù)分析離不開(kāi)數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無(wú)論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。
簡(jiǎn)而言之,數(shù)據(jù)挖掘其實(shí)是一類深層次的數(shù)據(jù)分析方法。數(shù)據(jù)分析本身已經(jīng)有很多年的歷史,只不過(guò)在過(guò)去數(shù)據(jù)收集和分析的目的是用于科學(xué)研究,另外,由于當(dāng)時(shí)計(jì)算能力的限制,對(duì)大數(shù)據(jù)量進(jìn)行分析的復(fù)雜數(shù)據(jù)分析方法受到很大限制?,F(xiàn)在,由于各行業(yè)業(yè)務(wù)自動(dòng)化的實(shí)現(xiàn),商業(yè)領(lǐng)域產(chǎn)生了大量的業(yè)務(wù)數(shù)據(jù),這些數(shù)據(jù)不再是為了分析的目的而收集的,而是由于純機(jī)會(huì)的(Opportunistic)商業(yè)運(yùn)作而產(chǎn)生。分析這些數(shù)據(jù)也不再是單純?yōu)榱搜芯康男枰饕菫樯虡I(yè)決策提供真正有價(jià)值的信息,進(jìn)而獲得利潤(rùn)。但所有企業(yè)面臨的一個(gè)共同問(wèn)題是:企業(yè)數(shù)據(jù)量非常大,而其中真正有價(jià)值的信息卻很少,因此從大量的數(shù)據(jù)中經(jīng)過(guò)深層分析,獲得有利于商業(yè)運(yùn)作、提高競(jìng)爭(zhēng)力的信息,就像從礦石中淘金一樣,數(shù)據(jù)挖掘也因此而得名。
因此,數(shù)據(jù)挖掘可以描述為:按企業(yè)既定業(yè)務(wù)目標(biāo),對(duì)大量的企業(yè)數(shù)據(jù)進(jìn)行探索和分析,揭示隱藏的、未知的或驗(yàn)證已知的規(guī)律性,并進(jìn)一步將其模型化的先進(jìn)有效的方法。
北京理工大學(xué)大數(shù)據(jù)搜索與挖掘?qū)嶒?yàn)室張華平主任研發(fā)的NLPIR大數(shù)據(jù)語(yǔ)義智能分析技術(shù)是滿足大數(shù)據(jù)挖掘?qū)φZ(yǔ)法、詞法和語(yǔ)義的綜合應(yīng)用。NLPIR大數(shù)據(jù)語(yǔ)義智能分析平臺(tái)是根據(jù)中文數(shù)據(jù)挖掘的綜合需求,融合了網(wǎng)絡(luò)精準(zhǔn)采集、自然語(yǔ)言理解、文本挖掘和語(yǔ)義搜索的研究成果,并針對(duì)互聯(lián)網(wǎng)內(nèi)容處理的全技術(shù)鏈條的共享開(kāi)發(fā)平臺(tái)。
NLPIR大數(shù)據(jù)語(yǔ)義智能分析平臺(tái)主要有精準(zhǔn)采集、文檔轉(zhuǎn)化、新詞發(fā)現(xiàn)、批量分詞、語(yǔ)言統(tǒng)計(jì)、文本聚類、文本分類、摘要實(shí)體、智能過(guò)濾、情感分析、文檔去重、全文檢索、編碼轉(zhuǎn)換等十余項(xiàng)功能模塊,平臺(tái)提供了客戶端工具,云服務(wù)與二次開(kāi)發(fā)接口等多種產(chǎn)品使用形式。各個(gè)中間件API可以無(wú)縫地融合到客戶的各類復(fù)雜應(yīng)用系統(tǒng)之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系統(tǒng)平臺(tái),可以供Java,Python,C,C#等各類開(kāi)發(fā)語(yǔ)言使用。
在現(xiàn)今社會(huì),數(shù)據(jù)挖掘技術(shù)已經(jīng)可以被應(yīng)用與所有的領(lǐng)域和行業(yè)中。在人們生活里的各個(gè)方面幾乎都可以用到數(shù)據(jù)挖掘技術(shù)數(shù)據(jù)挖掘技術(shù)不但給我們的日常生活帶來(lái)了巨大的改變和影響,并且這種影響還深深的改變著我們的生活方式。在各個(gè)領(lǐng)域的應(yīng)用也會(huì)越來(lái)越廣泛和深入,相關(guān)的研究也會(huì)越來(lái)越全面和深入,綜合應(yīng)用數(shù)據(jù)挖掘技術(shù)和人工智能技術(shù),為各個(gè)行業(yè)提供更多幫助。