三、鑄件溫度場(chǎng)的測(cè)定及動(dòng)態(tài)凝固曲線
鑄件溫度場(chǎng)測(cè)定方法的示意圖如圖129所示。將一組熱電偶的熱端固定在型腔中 (如
鑄型中)的不同位置,利用多點(diǎn)自動(dòng)記錄電子電位計(jì) (或其他自動(dòng)記錄裝置)作為溫度測(cè)量
和記錄裝置,即可記錄自金屬液注入型腔起至任意時(shí)刻鑄件斷面上各測(cè)溫點(diǎn)的溫度時(shí)間曲
52
線,如圖130(a)所示。根據(jù)該曲線可繪制
出鑄件斷面上不同時(shí)刻的溫度場(chǎng) [圖130
(b)]和鑄件的凝固動(dòng)態(tài)曲線 [圖131(b)]。
鑄件溫度場(chǎng)的繪制方法是:以溫度為縱
坐標(biāo),以離開鑄件表面向中心的距離為橫坐
標(biāo),將圖130(a)中同一時(shí)刻各測(cè)溫點(diǎn)的溫
度值分別標(biāo)注在圖130(b)的相應(yīng)點(diǎn)上,連
接各標(biāo)注點(diǎn)即得到該時(shí)刻的溫度場(chǎng)。以此類
推,則可繪制出各時(shí)刻鑄件斷面上的溫度場(chǎng)。
可以看出,鑄件的溫度場(chǎng)隨時(shí)間而變化,為不穩(wěn)定溫度場(chǎng)。鑄件斷面上的溫度場(chǎng)
也稱溫度分布曲線。如果鑄件均勻壁兩側(cè)的冷卻條件相同,則任何時(shí)刻的溫度分布曲線
對(duì)鑄件壁厚的軸線是對(duì)稱的。溫度場(chǎng)的變化速率,即為表征鑄件冷卻強(qiáng)度的溫度梯度。
溫度場(chǎng)能更直觀地顯示出凝固過程的情況。
圖131所示是鑄件的凝固動(dòng)態(tài)曲線,也是根據(jù)直接測(cè)量的溫度時(shí)間曲線繪制的:首先
圖131(a)上給出合金的液相線和固相線溫度,把二直線與溫度時(shí)間曲線相交的各點(diǎn)分
標(biāo)注在圖131(b)(x/R,τ)坐標(biāo)系上,再將各點(diǎn)連接起來,即得凝固動(dòng)態(tài)曲線。縱坐標(biāo)
子x是鑄件表面向中心方向的距離,分母R是鑄件壁厚之半或圓柱體和球體的半徑。因
固是從鑄件壁兩側(cè)同時(shí)向中心進(jìn)行,所以x/R=1表示已凝固至鑄件中心。
二、黏滯性及其對(duì)成型過程的影響
1黏滯性的本質(zhì)
液態(tài)金屬的黏滯性 (也稱黏度)對(duì)其充型過程、液態(tài)金屬中的氣體及非金屬夾雜物的排
除、一次結(jié)晶的形態(tài)、偏析的形成等,都有直接或間接的作用。
如圖17所示,當(dāng)外力F(x)作用于液體表面時(shí),由于質(zhì)點(diǎn)間作用力引起的內(nèi)摩擦力,
使得最表面的一層移動(dòng)速度大于第二層,而第二層的移動(dòng)速度大于第三層。
由式(15)可知,黏度與δ
3 成反比,與正比。能反映了原子間結(jié)合力
的強(qiáng)弱,而原子間距離也與結(jié)合力有關(guān)。因此,黏滯性的本質(zhì)是質(zhì)點(diǎn)間 (原子間)結(jié)合力的大小。